## REVISED STEREOCHEMISTRY OF PIERICIDIN A1

Rolf Jansen<sup>\*</sup> and Gerhard Höfle

GBF, Gesellschaft für Biotechnologische Forschung mbH, Abteilung Naturstoffchemie Mascheroder Weg 1, D-3300 Braunschweig, West-Germany

On the basis of unequivocal optical rotation data for the 3,5-dinitrobenzoate of (5)-2-methyl-3-pentanol (5a) the configuration of piericidin A<sub>1</sub> must be revised to 9R,10R as depicted in <u>1</u>.

The piericidins (e.g. piericidin  $A_1(\underline{1})$ ) are well studied antibiotics and highly effective inhibitors of mitochondrial electron transport<sup>1)</sup>. Recently we isolated the myxalamides (e.g. myxalamide B( $\underline{2}$ )), which exhibit striking similarities to the piericidins regarding not only the nature of their biological activity<sup>2)</sup> but also a considerable part of their constitution<sup>3)</sup>. Although the details of the side chain may be not so important for the inhibitory action of piericidins<sup>1)</sup>, it seems strange, that the myxalamides should possess the reverse configuration in the otherwise analogous structural element<sup>4)</sup>.



The (12R,13R)-configuration in the myxalamides was unambigously deduced from X-ray structural analysis of the p-bromophenacyl ester  $\underline{3b}$ , obtained from acetylated myxalamide B ( $\underline{2}$ ) by ozonolysis and esterification of the intermediate  $\gamma$ -keto acid  $\underline{3a}^{4}$ .

The structure elucidation of the seventeen piericidins  $\overline{5}$ , isolated from several *streptomyces* species, is based on extensive spectroscopic, chemical<sup>6)</sup> and biosynthetic<sup>7)</sup> studies resulting in the constitution of piericidin A<sub>1</sub>. The stereochemistry of both chiral centres, common to all structural varieties, was determined by ozone degradation of acetylated piericidin A<sub>1</sub> (<u>1</u>),

which afforded the key intermediate <u>3a</u>. On catalytic hydrogenation the  $\gamma$ -keto acid <u>3a</u> readily cyclised to the  $\gamma$ -lactone <u>4</u>. Comparison of the piericidin derived lactone <u>4</u> with synthetic diastereomers. allowed the assignment of the 2,3-cis-configuration in lactone <u>4</u><sup>8)</sup>. The absolute configuration of C-3 was deduced from stepwise reduction of the  $\gamma$ -keto acid <u>3a</u> to 2-methyl-3-pentanol (<u>5a</u>), eventually characterised as the dextro rotatory (+)-3,5-dinitrobenzoate (<u>5b</u>) ([ $\alpha$ ]\_D^{15} = + 7.7^{\circ}, c = 2.9 in CHCl<sub>3</sub>). This was correlated with the known (-)-3,5-dinitrobenzoate of (S)-2-methyl-3-pentanol (<u>5a</u>)<sup>9</sup>, thus identifying the degradation product <u>5a</u> as R-alcohol and attributing (2R,3S)-configuration to the  $\gamma$ -keto acid <u>3a</u>. Consequently (9S,10S)-configuration was assigned to piericidin A<sub>1</sub> (<u>1</u>)<sup>6</sup>.

Examination of the literature cited<sup>9)</sup> for this correlation revealed a serious ambiguity concerning the direction of the optical rotation ascribed to the 3,5-dinitrobenzoate of (S)-2-methyl-3-pentanol (5a) (pages 2844 and 2853 in lit.<sup>9)</sup>).

In order to resolve this ambiguity we prepared the acidic phthalate of racemic 2-methyl-3-pentanol  $(\underline{5a})$ , recrystalised its brucine salt several times from acetone and regenerated the acidic phthalate<sup>10)</sup>  $([\alpha]_D^{22} = +1.6^\circ, c = 2.8 \text{ in CH}_2\text{Cl}_2)$ . Basic hydrolysis and distillation yielded (-)-2-methyl-3-pentanol ( $\underline{5a}$ ) of 48 % optical purity  $([\alpha]_D^{22} = -4.1^\circ, c = 2.0 \text{ in CHCl}_3;$  lit.<sup>9)</sup>  $[\alpha]_D^{27} = -8.5^\circ, c = 3.3$  in ethanol). Upon addition of Eu(hfbc)\_3 a resolution of the methyl signals in the <sup>1</sup>H-nmr spectrum of alcohol  $\underline{5a}$  is observed with the expected ratio of intensities 72:28. The 3,5-dinitrobenzoate of the S-enriched alkohol ( $\underline{5a}$ ) exhibits a positive optical rotation ( $[\alpha]_D^{22} = +2.5^\circ, c = 2.9$  in CHCl<sub>3</sub>; lit.<sup>9)</sup>  $[\alpha]_D^{26} = +4.9^\circ, c = 1.1$  in CHCl<sub>3</sub>). This result proves: The dextro rotatory 3,5-dinitrobenzoate  $\underline{5b}$  obtained from piericidin A<sub>1</sub> ( $\underline{1}$ ) indicates S-configuration for the alcohol  $\underline{5a}$  and it implies (2S,3R)-configuration for the keto acid  $\underline{3a}$ . Accordingly (R,R)-configuration results for piericidin A<sub>1</sub> ( $\underline{1}$ ), as for myxalamide B (2).

Aknowledgment: We thank Dr. L. Ernst for <sup>1</sup>H-nmr spectra.

## References and notes

- 1) S. Yoshida, Y. Nagao, A. Watanabe and N. Takahashi, Agric. Biol. Chem. 44, 2921 (1980).
- 2) K. Gerth, R. Jansen, G. Reifenstahl, G. Höfle, H. Irschik, B. Kunze, H. Reichenbach and G. Thierbach, J. Antibiotics in press.
- 3) R. Jansen, G. Reifenstahl, K. Gerth and G. Höfle, Liebigs Ann. Chem. 1983, 1083.
- 4) R. Jansen and G. Höfle, Liebigs Ann. Chem., in press.
- 5) a: S. Yoshida, K. Yoneyama, S. Shiraishi, A. Watanabe and N. Takahashi, Agric. Biol. Chem. <u>41</u>, 855 (1977); b: C.Y. Chen, W.C. Huang, K.J. Lin, Y.Y. Quian, L.Y. Wang and W.Q. Zhou, Wei Sheng Wu Hsueh Pao 21, 192 (1981), Chem. Abstr. 95, 148643 (1981).
- 6) N. Takahashi, S. Yoshida, A. Suzuki and S. Tamura, Agric. Biol. Chem. <u>32</u>, 1008 (1968) and lit. cited.
- 7) S. Yoshida, S. Shiraishi and N. Takahashi, Agric. Biol. Chem. <u>41</u>, 587 (1977) and lit. cited.
- 8) Since the <sup>1</sup>H-nmr spetra of the methyl esters of  $\underline{3a}$  derived from piericidin A<sub>1</sub> and myxalamide B are identical, this relative configuration is confirmed<sup>4)</sup>.
- 9) G. Büchi, L. Crombie, P.J. Godin, J.S. Kaltenbronn, K.S. Siddalingaiah and D.A. Whiting, J. Chem. Soc. 1961, 2843.
- 10) P.A. Levene and R.E. Marker, J. Biol. Chem. <u>99</u>, 321 (1932/33) and <u>97</u>, 379 (1932).

(Received in Germany 26 August 1983)